
Plane problem of the theory of elasticity for multiply-connected domains 891 

which are close to the boundary of the disk. The relative dimensions of the disks were 
r ] K = 0.23, H / R = 0.4 and P 1 R = 0.3, H I R = 0.6 , respectively. The order of 

the normal system was chosen to be 22, the duration of the computations was about 30 

minutes. The closeness of the obtained solution to the exact one was estimated from 

the relative error in the realization of the boundary conditions, being 4 % in the first case 
and 2.5 % in the second case. For N = 6, for the same disposition of the holes and the 

same accuracy, the duration of the computation increased to 42 minutes. 
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Problems of the axisymmetric deformation of elastic thin-walled shells of revo- 

lution, taking into account the finiteness of the displacements, have been exam- 

ined sufficiently completely up to now for spherical type shells. Thus, numerical 

methods have been developed in [l-4] and solutions have been obtained for 
domes of diverse geometry under various external effects. It is shown below in 

the example of a long cylindrical shell that equilibrium modes of the rubber type 
of a flexible rod appear for shells of revolution whose Gaussian curvature is al- 
most zero, under definite effects. 

Let a cylindrical shell of thickness h and radius Er (Fig. 1) be compressed uniformly 
by longitudinal stress resultants N and heated to the temperature t (5) = 1/S 2’ sign (x), 
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which is constant along the thickness. 
We seek symmetric equilibrium modes 
relative to the shell axis. We use a li- 

near dependence between the stresses 

and strains by assuming the strainssmall 

compared to unity [S]. Under these 

assumptions, the strained middle surface 

is skew-symmetric relative to the sec- 

tion z = 0 to the accuracv of small 

quantities on the order of v /I / H . 

o- 
0.5 k 

The strain potential energy is determ- 
f ined by the bending moment M, = 

- Dd6 I ds and the circumferential 

Fig. 1 stress resultant N, -= Ehw I R. Here s 

is the arclength of strain middle sur- 
face meridian, 6, w are the angular displacement and deflection measured along the 

normal to the initial surface, h’, Y are the elastic modulus and Poisson’s ratio, respect- 

ively, and D = EhS / [I2 (1 - Y’)]. 

Let us introduce the dimensionless quantities 

f = B (w - =?I), E = BS, ~=NiN*=‘ia NR/vDTh 
where 

p = [I2 (1 - +) / (hR)2]“‘, ‘L’~=V~~RT+VNR~E)~ 

(a is the coefficient of temperature expansion, fV* is the Euler critical force). 

We consider the problem of the shell equilibrium modes as a problem of the extrem- 
urn of the functional 

0 

under the condition f’= sin 6 (the prime denotes differentiation with respect to E). By 

using Lagrange multipliers, we obtain the equation of the problem and the natural bound- 

ary conditions. By appending the kinematic conditions (taking symmetry into account), 
we formulate the following boundary value problem: 

(2p tg 6 + 6” / cos 0)’ + f = 0, f’ - sin 6 = 0 (0 < F. < ~0) (1) 
e’(0) = 0, f(0)=-k((h=l/,afiRT), f(m)==8(co)=O 

Let us note that the svstem (1) can be renresented in the form obtained in [6] by intro- 

ducing the function I$ = 2 (N, sin 6 + Q ~0s 6) i N * , or taking account of the appropri- 
ate physical and geometric relationships (under the assumptions made earlier). This sys- 
tem can be reduced to integrable form by simple manipulations. Taking account of the 
condition at infinity, the first integrals of the system are 

26” sin 6 - (6’” - I’) COS 6 + 4p (1 - COS 6) = 0 (2) 

bet 6, denote the angular displacement 6 at i = 0. We note that the solution corre- 
sponding to the value 6, = z can hold for I? = 8p, which permits the assumption of 
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the existence of equilibrium modes charac- 

terizing sufficiently large angular displace- 
ments. For j = 0 the first of the relation- 

ships (2) permits efficient use of the method 

of reduction to a Cauchy problem for the 
numerical solution because the initial con- 

..__. __.. 
ditions for given values of the parameters k 
and p can be expressed explicitly in terms 

of 6,. The problem is reduced to seeking 

that value of 6, for which the solution ofthe 

Cauchy problem is damped out for large va - 

lues of E. Taking the damping into account, 

the linearized equations 

F, .zz f” + hj’ j- j, h= 1’2 (1 -- (1) 

F,= S"$- h6' f 6, ij, >, E* 

can be written instead of (1) starting with 

some E =L: E*. Hence, the requirement for 

damping of the solution can be formulated 

as a conjugate condition for the solution 
Fig. 2 with damping 

Fi (P) = 6, i= l,:! (3) 

Such values of 6, were selected during the computation that the solutions obtained 
for the Cauchy problem would satisfy conditions (3) for different values of the parameters 

k and p , and in this sense would be solutions of (1). The value of i*was determined 

during the computation from the conditions of complying with (3) with given accuracy. 
The dependences 6, = 6, (p) obtained for fixed k are presented in Fig. 2 (solid lines). 
The essential difference from the dependence 6, = k / k (dashed lines) which holds in 
the linear formulation is that for the same value of p the existence of both a stableequi- 

librium mode similar to that described by linear theory, and an “inverted” (unstable) 

equilibrium mode is possible. For definite values of the parameters k = k*, p = ij*,the 

existence of adjacent axisymmetric eq~librium modes is possible, i. e. buckling “in the 
large” occurs. The curve of the dependence of the critical value of the axial load para- 

meter P* on the value of the heating parameter. k is presented in Fig. 1. For o<l13 the 
mentioned phenomenon does not hold for any values of the heating parameter. 
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Existence of the generalized solution in the problem of equilibrium of the iso- 

tropic elastic nonshallow spherical dome with rigidly held edge and subjected 

to axisymmetric deformation is proved by the method presented in [ 11. The 

topological characteristic of the problem, i.e. the vector field rotation is com- 
puted. The solvability of nonlinear equations for nonshallow shells of revolution 

subjected to symmetric load was investigated in [2, 31. However dome-shaped 

shells were not considered there. 

1. Fundamental relationrhipr, We consider the following version of rela- 

tionships of the nonlinear theory of nonshallow symmetrically loaded shells of revolution: 

T, (&j) = K (81 + v~z), M, = 1) (Xi + YXp) 1 = 2 (1.1) 
ai = VA’ (AB)-’ + wR1-1, F2 = u’B-l + wRz-’ + $z2-i 

x1 = - $A’ (AB)-1, xz = - +‘B-I, $ = ,,,/B-1 _ L;R2-1 

T,, = M,, = ~12 = ~1% = 0 

K = 2hE (1 - v2)-‘, D = 2h3 [3 (1 - +)J-iLE 

where Ti and T,, are tangential stresses; Q and &i2 are the tensile and shear strains, 
respectively ; Mi and Mlz are, respectively, the bending moment and the torque ; xi 
and xl2 are changes of curvature Ri_’ of the shell middle plane s*; v and 11’ are, respec- 

tively, the tangential and normal displacement of the shell middle plane S* ; :I’, B”. 
2C = 0 are coefficients of the first quadratic form of surface s* ; E > 0 is the Young 

modulus ; o < v < liz is the Poisson ratio, and 2h is the thickness of the shell. A prime 
superscript denotes differentiation with respect to parameter l3. 

The analysis of a spherical dome is conveniently carried out in spherical coordinates 
un which A = p sin p, l3 E [O, bl, B = Ri = p, where p is the radius of the shell mid- 
dle plane s*. For convenience we set p G 1. The substitution v = w’ - $ eliminates 
v from all formulas. We introduce the notation 

e, (u.) := 10’ ctg f3 + w, e2 (UJ) = U? + 1~ (1.2) 

The equation of the shell equilibrium is determined by the Lagrange principle which 


